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A circular cylinder is held vertically and withdrawn from a large bath of liquid. 
When the horizontal end face of the cylinder rises above the mean undisturbed 
liquid level, an axially symmetrical meniscus is formed, which joins the cylinder 
at the circumference of the end. If the cylinder is further withdrawn, at a certain 
height the meniscus breaks. By means of the calculus of variations the condition 
for stability is derived in terms of the increase in height and the increase in the 
angle between the tangent to the meniscus and the face of the cylinder at the 
point where the meniscus joins it. The meniscus is unstable as long as these 
changes are of the same sign. 

1. Introduction 
The dominant influence of surface-tension forces is apparent in many pheno- 

mena and often they have important technological effects. This has stimulated 
a growth of interest in the shapes of liquid surfaces, particularly since the deriva- 
tion of values of surface tension from experiment usually requires knowledge of 
the solutions of the fundamental equation of equilibrium. This equation has 
therefore often been the subject of numerical studies (see for instance Princen 
1969). Insight into another aspect of these solutions has recently been obtained 
from the examination of stability criteria by Padday & Pitt (1 973) using numerical 
methods and by Pitts (1973, 1974) using the variational calculus. From this 
work has come the suggestion of new methods which offer advantages in the 
measurement of surface tension (Padday & Pitt 1975; Pitts 1975). 

Padday & Pitt proposed that surface tension could be accurately determined 
in the following way. Tf a circular cylinder is held vertically and withdrawn from 
a large bath of liquid, then as the horizontal end of the cylinder rises above the 
mean horizontal free liquid surface, a meniscus is formed whose section is similar 
to that in figure 1. The meniscus is rotationally symmetrical about the axis OA 
,of the cylinder; the narrowing of the meniscus shown in the figure is of course 
not always present. Padday & Pitt made the important remark that, since the 
upward force needed to lift the cylinder passes through a maximum before the 
meniscus breaks, the measurement of this maximum force could be performed 
with great accuracy, since it would be possible to make observations while 
passing through the maximum. They calculated the maximum force in terms of 
the dimensions of the cylinder, the surface tension and the density of the liquid, 
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Jf , 
FIUURE 1. The axially symmetrical meniscus and the co-ordinate system. The tangent to 
the meniscus at  A makes an angle 0 with the horizontal face of the withdrawn cylinder. B 
represents the top of the wall of the dish of liquid. 

and hence were able to derive values of surface tension from their experiments. 
Kovitz (1975) has independently proposed a method closely related to this. 

He suggested that the surface tension could be derived from the observation of 
the maximum height to which the cylinder could be withdrawn before the 
meniscus breaks. The writer’s experiments (Pitts 1975), in which the maximum 
height of a drop hanging from a tube is used to find the surface tension, shows 
that such a method based on the determination of the point of transition from 
stable to unstable equilibria can indeed be successfully used. 

The arrangement shown in figure 1 is also encountered in the growth of 
crystals from a melt. It is often highly desirable that the solidified material, 
which forms the withdrawing cylinder, should have a uniform cross-section. It 
is also obviously necessary to avoid breaking the meniscus, and the shape of the 
liquid surface is therefore of great importance. 

With these examples in mind it is of interest to examine by means of the 
calculus of variations the stability of menisci like those in figure 1. There does 
not appear to be any published treatment of this problem apart from the sug- 
gestive numerical study by Padday & Pitt (1973). 

A good model of the actual configuration would appear to be one in which the 
liquid surface extends to infinity, so that the problem is physically determined 
when the height of the withdrawing cylinder above the mean liquid surface is 
given. However, there are difficulties in applying many of the standard results 
in the calculus of variations to an infinite surface, if rigour is demanded. 

To avoid a discussion of purely mathematical aspects of the calculus of 
variations, we can instead return to the discussion of the actual system, in which 
of course the surface is finite. We now encounter a different complication, which 
arises from the physics of the problem. Suppose we imagine that the liquid 
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surface extends to the wall of a circular dish whose centre lies on the extended 
axis of the vertical cylinder. We suppose that B in figure 1 represents the top 
of the wall of the dish. It will be convenient to refer to the co-ordinate axes 
shown in figure 1 ; the abscissa is downward along the axis of the cylinder, whose 
radius is a,  and the ordinate is in the horizontal face of the cylinder, from the 
perimeter of which the meniscus hangs. Then knowledge of the height xo from 
the base of the cylinder to the horizontal level B of the top of the dish and the 
value of the radius yo of the dish (together with the values of surface tension, 
gravity and density) no longer defines a unique meniscus. We must know in 
addition either the total volume of liquid present or the value of the pressure in 
the liquid at some point. 

That this is so can be seen by considering the situation when the dish is not 
much wider than the cylinder. We could imagine that the liquid in the dish 
initially has a surface which is lowest in the centre and which rises to the top of 
the wall B as the side of the dish is approached. If the cylinder is brought vertically 
down to touch the liquid, then raised again to a certain height above the level B, 
a particular meniscus will be formed. However, the liquid initially in the dish 
could have been of sufficient volume that its height on the axis of symmetry 
exceeded that of the level B, surface tension preventing its overflowing. Then if 
the vertical cylinder were brought into contact and withdrawn to the same 
height as before, an entirely different meniscus would result. Purthermore, as 
the size of the dish becomes very large, these two configurations remain different 
near the walls of the dish. 

This example, in which the volume of liquid is prescribed, would therefore 
lead to a variational problem with a subsidiary constraint. Again, if rigour is 
demanded, substantial difficulties arise, not least in considering the limiting case 
of very large surfaces, which is the one of most practical importance. 

A conditional variational problem can be avoided, a t  the cost of some arti- 
ficiality, if we suppose that at a particular place, which can conveniently be 
chosen as B in figure 1, the tangent to the liquid surface is horizontal and the 
pressure in the liquid has a given value. This is equivalent to specifying the 
radius of curvature (in the vertical plane) of the profile of the surface at B. We 
then consider what happens when B is removed to large distances. 

In  our discussion of the variational problem only axially symmetrical pertur- 
bations will be considered. The results obtained provide a theoretical basis for 
the calculations of Padday & Pitt and clarify some of the observations made by 
Kovitz. 

2. Equilibrium 
As previously explained, we suppose that the liquid surface is horizontal a t  

B(xo, yo) and that the pressure in the liquid there is po. We require an expression 
for the energy of the liquid as the basis for our variational treatment. We take 
the level B as the reference for potential energy. 

If y is the surface tension and ds is an element of length along the profile, then 
the surface energy required in the formation of an elementary slice of liquid of 
thickness dx is 27rryy ds. The pressure in the liquid at the slice is po+pg(x-xo) ,  
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where p is the density of the liquid and g is the acceleration due to gravity. The 
slice of liquid therefore requires the expenditure of the amount of work 

- ng2bo + pg(X - xo)] d X  + 2 ~ 7 ~  d~ 

in its formation. Hence the total energy of the liquid above the level B is 

E, = Jox' [2.rrYY(l +Y:)~-~Y2(Po-~9~0 +pgx)ldx, 

where yz = dy/dx. We introduce dimensionless units by writing 

2 = (7/pg)4 Ell = ny12E, pglp = PgXO-Po,  

I [  = X, 17 = y, l K  = Xo, 170 = YO, lh = a. 

Then 

where 3 = 27(1+7p+7"-c;). (1b) 
We have now to consider the variation of E.  Our choice of boundary conditions 

ensures that standard results in the calculus of variations can be used, since we 
have a finite surface whose end points A and B are fixed. The Euler-Lagrange 
equation for the extremals is the well-known expression, 

which may also be written as 

When [ = K in (2a) the quantity K -p,  which corresponds to the (dimensionless) 
pressure in the liquid at By is equal to the sum of the curvatures with their 
appropriate sign, in accordance with elementary physical considerations. 

Furthermore, for surfaces like that in figure 1 for which rs increases mono- 
tonically from A to B, it follows that vrS is positive and hence p > [ throughout 
the curve AB. 

If we multiply both sides of (2b) by ~7~ and integrate, we readily obtain an 
expression for the volume w of liquid in the meniscus above the level By viz. 

where 8 is the angle between the tangent to the meniscus a t  A and the horizontal 
face oFthe cylinder (see figure 1). 

The profile cannot possess a corner, i.e. a place a t  which the tangent experiences 
a discontinuity. This physically obvious feature is formally proved by the 
Weierstress-Erdmann conditions (see Bolza 1961, p. 38). If m, and m2 are the 
gradients adjacent to a corner, we must have 

(41, (5) FXY 7, m1) = TlGY 7, mz), ( F  - 75~1)&,rnl = ( F  - 7~P)&11,rn2Y 
where F, = i7F/aqE. Condition (4) gives 

m,( 1 + m2,)-3 = m,( 1 + mt)4 ,  



A meniscus joining a rod to a bath of liquid 645 

FIGURE 2. Schematic representation of a typical solution of the equation of equilibrium 
for arbitrary values of the parameters p and 8. 

and after simplification (5) gives 

(1 + m"l-4 = (1 + m"z-!t. 

Thus ml is equal to m2 and the gradient is continuous, so that no corner can exist. 
Before discussing the stability of the meniscus, i t  will be helpful to draw 

attention to some of its qualitative features. These can be seen by examining 
numerically computed solutions of the equilibrium equation (2a). If p is given 
together with 8, the solution can be calculated step by step starting from A in 
figure 1. A typical example is shown diagrammatically in figure 2. In  general, 
the profile so calculated will not pass through B. I n  order that it may do so for 
the given 8, a particular value must be given to p, but now the tangent to the 
curve at B will not usually be horizontal. This condition can only be met by 
giving certain values to 8. The calculation of equilibrium profiles is thus a 
complicated numerical problem. 

This behaviour is illustrated by the approximate treatment (given in the 
appendix) of a meniscus for which the value of 0 approaches 7 ~ .  Then the gradient 
of the surface is everywhere large compared with unity, and explicit expressions 
can be found which can also be used to demonstrate some of the features of the 
stability criterion. 

3. Stability 
We have now to decide whether the curves determined by (2) and the boundary 

conditions minimize E. Those for which E is not a minimum are unstable, and 
will not occur in practice. 

If the equilibrium curve minimizes E ,  a number of conditions have to be 
satisfied (see for instance Bolza 1961, p. 101). We shall consider the requirements 
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when strong variations are allowed. A necessary condition is Legendre’s, namely 

(a2Fla7%),,,f 2 0 
throughout the curve; i.e. 

27(1+7!)-8 2 0. 

This is obviously true as long as 7 is never negative, which would represent an 
impossible configuration of the axisymmetrical meniscus. The corresponding 
sufficient condition for a strong minimum is 

which implies 11 > 0 throughout the meniscus. 

the excess function must not be negative, i.e. 
The Weierstrass condition which is necessary for a strong minimum is that 

This may be written as 
(1 +P2)W + 7 p -  (1 +P7& 2 0, 

that is (P - 7Sl2 2 0, (8) 
which is always satisfied. 

The remaining conditions relate to the zeros of the solutions u(5) of the Jacobi 
accessory equation corresponding to 3’. After simplification by using (2a) this 
is found to be 

where 

The solutions of (9) are given by the partial derivatives of the solutions ~ ( 6 )  of 
the Euler equation (2a) with respect to their parameters. By differentiation of 
(2a) with respect to 0 and some manipulation, a solution of (9) is found to be 

d(~u~) ld5+qu  = 0, (9) 

f = q( 1 + $)-%, Q = 7-l( 1 + T#$)-% 

u1 = aviae. 

u2 = 7s + w a t L  
Similarly it can be shown that 

is the other solution. The general solution of (9) which vanishes at A(0, A )  is 
therefore 

Since near A we have 

it follows that ul(0) is zero, and so apart from an arbitrary multiplying factor the 
solution of the Jacobi equation which vanishes a t  A is given by (10). 

The remaining necessary condition for a strong minimum is that El, the next 
zero of ul(c) after A ,  is greater than or equal to K ;  the corresponding sufficient 
condition is 6, > K. We therefore require information about the zeros of ul, 
which must be deduced from the differential equations (2) and (9) since explicit 
solutions cannot be found. 

It appears difficult to derive any relevant general results from these equations, 
but fortunately one important result can be obtained from very simple geo- 

u = u1(6) %(O) -Uz(E) Ul(0). 

7 = ~ - ~ c o t e + o ( p ) ,  (12) 
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FIGURF, 3. The angle 0 as a function of meniscus height K for given values of the cylinder 
radius h when the meniscus surface extends to infinity. M N  is the locus of the configurations 
for which the volume between the horizontal through the liquid at  infinity and the liquid 
surface is a maximum. 

metrical considerations. From (12) it  follows that for small t 
u1 = f cosec28 + O(E2), (13) 

and so u1 is positive for small positive 5. We also have the relation 

Since 7, is positive near B(K, q0), then if (ac/86), is positive here also, u1 must be 
negative. Hence for a t  least one value of 6 between 0 and K ,  u1 has passed through 
zero. In  these circumstances the condition for a minimum is not satisfied, and 
indeed the second variation of E can be made negative and such a meniscus is 
unstable. 

We can therefore say that, if we have values of p and 0 such that the meniscus 
approaches the horizontal a t  B(K, yo) as shown in figure 1, there will be instability 
if (for the given p)  any small increase in 8 would define a new meniscus for which 
the corresponding value of 6 exceeds K when 7 = qo. 

In practice we are interested in the case when B is far removed from the axis 
of symmetry, and the pressure in the liquid there is very nearly equal to atmos- 
pheric pressure. We require information about the stability of these surfaces, and 
we have a t  our disposal the criterion just derived in terms of 87/86. Now in the 
limit as B goes to infinity, p must equal K and (2a)  has a singularity. The angle 8 
is then the sole parameter of the solutions, and we cannot immediately derive 
ul(c) for such solutions, because it is the value of @/a6 when p is kept constant. 
We need an expression for the stability criterion which is related to the solutions 
of (2a)  when p is equal to K ,  which is a function of 8. 
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The nature of the relationship between 8 and K has been explored by iterated 
numerical integration of (2a), which allows those values of 6 to be found which 
for given K yield a solution in which qo tends to infinity. The graph in figure 3 
shows 8 as a function of K for given values of the radius A. It will be seen that 
under certain conditions two values of 8 are possible; for example if h = 0.6 and 
K = 0.08, the two values of 8 are approximately 9' and 96". 

If ,u is regarded as a function of 8, in (2a) ,  we may in principle select the 
solutions which satisfy the boundary conditions at A and B, and inquire how 
they change when 8 is altered. Regarding ,u and 8 as distinguishable parameters, 
the change would be written as 

that is, from the definition (1 0)  

If for the solution of (2a)  when ,u = K we write 7, from (15) we expect that the 
corresponding value of ul(E) will tend to 

u1 = d?i/d8 - a d ~ / d 6 ,  (16) 

where a = lim (ar/a,u),. 

Now if dK/de is positive i t  is clear [from the argument using (14)] that, some- 
where between A and B, dTj/de must vanish, since from (16) it  is readily shown 
to be positive sufficiently near A and eventually a t  B is negative. From (2a )  
we can obtain an approximate expression for the solution 7 in the vicinity of B, 
namelv 

V - q  

K - c  !i 
= q 0 - 2 t  ( , U - K )  - "rs)' 

where ,u > K > c as already pointed out. From this result it immediately follows 
that aT/a,u is positive near B. This result holds however large qo may be a t  B. 
Thus we may expect that, as q approaches 7 ever more closely, both terms in 
(16) will be negative near B if d ~ I d 6  is positive. Since u1 is positive near A ,  it 
follows that under these conditions u1(C) will certainly have passed through zero 
as c varies between zero and K ,  and so the meniscus will be unstable. 

These arguments show that the singular solutions of (2a )  which correspond 
to the infinite meniscus are unstable whenever the values of K and the corres- 
ponding eigenvalue 8 increase together. Unfortunately i t  has not been found 
possible to prove that the meniscus is stable when dKlde is negative, although 
experiments by Kovitz and Padday & Pitt show that this is so. 

The difficulty in proving stability arises from the absence of explicit expres- 
sions for ul(() and the consequent difficulty in discussing the position of zeros 
of this function and their dependence on ,u and 0. Only the basic Jacobi equation 
(9) is available. However, in the appendix a short account is given for the case 
when 8 departs by a small amount from its greatest value 7r. It is shown that 
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dK/d$ is negative, and all such solutions are stable, as would be expected from 
intuitive physical considerations. 

4. Discussion 
The limitations in the foregoing analysis should be recalled. First of all, axially 

symmetrical perturbations are the only ones considered. Second, the simple 
variational approach which has been adopted presupposes that the profile ~ ( 5 )  
is a single-valued function of 5 between the limits A and B, and remains so under 
variation. A complete discussion of the problem would require the removal of 
both of these restrictions. Finally, it  has only been found possible to prove a 
criterion for instability, namely that K and 8 increase together. It appears from 
experiment that the meniscus is stable otherwise. I n  figure 3, M N  shows the 
locus of the configurations for which the volume of the meniscus is a maximum; 
it will be seen that they lie outside the region for which dK/de is positive, where 
the surfaces are unstable. This again is in agreement with experiment. 

The stimulus for this investigation is largely due to the work of Dr J. F. 
Padday and his collaborators in this laboratory, together with interest and 
helpful comments from others working on related problems, amongst whom I am 
most grateful to Dr D. H. Michael for his encouragement. 

Appendix 

and, having regard to the sign of the derivative, we obtain 
If in (2a) we suppose that vE B 1, we may take 7 as the independent variable 

where I, and K, are modified Bessel functions of order zero. In  determining 8 
and 2" from the boundary conditions we make use of the following well-known 
properties of the Bessel functions : 

G(7) = 4 ( 7 ) ,  W 7 )  = -K1(7L 

7 [ 4 ( 7 )  K:(7) - 1x7) Kv(7)l = - 1, 7[IY(7) KY+l(7) +I+1(7) KY(7)l = 1, 

c = -cote, ( A  3) 

where a prime denotes differentiation with respect to the argument. If we write 

which is positive when Qn < 8 < n, then the boundary conditions a t  A in figure 1 
require 

- 
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0 0.2 0.4 0-6 
6 (from (A 12)) 180 166 154 144 

{6( numerical) 180 166 152 137 

6 (from (A 12)) 180 164 150 139 

0 (from (A 12)) 180 159 142 130 
8 (numerical) 180 157 134 107 

6 (numerical) 180 164 147 129 h = l  { 
h = 0.4( 

TABLE 1 

From these expressions the changes in the solutions which arise when 0 (that is, 
when c) and ,u are independently varied can be found. 

Since when the surface passes through B the tangent is horizontal, we must 
have 

Hence from (As) and (AT) we obtain 

( a W 7 ) B  = fJII(70) - TKl(70) = 0. 

P = C[I1(70) Ko(4 + I O ( 4  Kl(70)I [4(70) K l ( 4  - Il(4 JG(70)I-l, 

(A 8) 

(A 9) 

which gives the relation between c and p. Finally, the surface must pass through 
B, and we obtain 

50 = CVl(70) [Ko(h) - KO(70)l +K1(70) [ I 0 ( 4  - ~ 0 ~ 7 0 ~ 1 ~ r ~ 1 ( 7 0 )  K l ( 4  - Il(4 K(70)I-l, 
(A 10) 

which determines c. 
I n  the limit when qo tends to infinity, we find that 

It is of interest to compare the values of 0 derived from these expressions for 
several values of K (= lo) and h with those calculated numerically. This com- 
parison is given in table 1, where angles have been rounded to the nearest degree. 

Finally, we can derive the zero of ul(() from (14) by considering the zero of 
(aLJac),. From (A2) this will be zero when 

which from (A 6 )  and (A 7) gives 

that is 

where M(7)  = Io(7) K~l(7). Since 

d W r ) / d 7  = r7K37)I-l ' 0 (A 14) 
it is obvious that, apart from 7 = A, there are no solutions of (A13). Hence 
ul(t) has no zero other than at A in figure 1, and the meniscus is stable. 



A meniscusjoining a rod to a bath of liquid 661 

REFERENCES 

BOLZA, 0. 1961 Lectures on the C a b d m  of Variations. Dover. 
KOVITZ, A. A. 1975 J .  Colloid Interface Sci. 50, 125. 
PADDAY, J. F. & PITT, A. R. 1973 Phil. Trams. A275,489. 
PADDAY, J. F. & PITT, A. R. 1975 In the press. 
P I ~ S ,  E. 1973 J .  Fluid Mech. 59, 753. 
PITTS, E. 1974 J .  Fluid Mech. 63,487. 
PITTS, E. 1975 J .  Chem. SOC. Paraday 172,1519.  
PRINCEN, H. M. 1969 In Surface and Colloid Science (ed. E. Matijevic), vol. 2, p. 1. 

Interscience. 


